

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2018
Project 3 – Minesweeper

Assignment: Project 3 – Minesweeper
Due Date:
 Design Document: Friday, May 4th, 2018 by 8:59:59 PM
 Project: Friday, May 11th, 2018 by 8:59:59 PM
Value: 80 points

Collaboration: For Project 3, collaboration is not allowed – you must work
individually. You may still come to office hours for help, but you may not work
with any other CMSC 201 students.

Make sure that you have a complete file header comment at the top of each
file, and that all of the information is correctly filled out.

File: FILENAME.py

Author: YOUR NAME

Date: THE DATE

Section: YOUR DISCUSSION SECTION NUMBER

E-mail: YOUR_EMAIL@umbc.edu

Description:

DESCRIPTION OF WHAT THE PROGRAM DOES

CMSC 201 – Computer Science I for Majors Page 2

For Project 3 you will have to turn in a “design document” in addition to the
actual code. The design document is intended to help you practice deliberate
construction of your program and how it will work, rather than coding as you
go along, or starting without a plan.

Instructions
For this project, you will be creating a single program, but one that is bigger in
size and complexity than any individual homework problem. This assignment
will focus on manipulating lists, calling functions, and recursion. For this
assignment, more than any other this semester, planning ahead and
designing your program will be very, very important!

The design for Project 3 is entirely up to you – suggestions are provided
within the project description, but you are not required to use them.

At the end, your Project 3 file must run without any errors.
It must also be called proj3.py (case sensitive).

Additional Instructions – Creating the proj3 Directory
During the semester, you’ll want to keep your different Python programs
organized, organizing them in appropriately named folders (also known as
directories).

You should create a directory in which to store your Project 3 files. We
recommend calling it proj3, and creating it inside a newly-created directory

called Projects inside the 201 directory.

If you need help on how to do this, refer back to the detailed instructions in
Homework 1.

CMSC 201 – Computer Science I for Majors Page 3

Objective
Project 3 is designed to give you practice with two-dimensional lists, creating
and calling functions, and recursion. You’ll need to use practically everything
you’ve learned so far, and will need to do some serious thinking about how all
of the pieces you need to create should fit together.

Remember to enable Python 3 before running and testing your code:
 scl enable python33 bash

Task
You will be programming up a simplified version of the Minesweeper puzzle
game. The goal of the game is to determine the location of all of the board’s
“mines,” using clues about the number of neighboring mines in each field. In
our version, the game is won if all of the mines are correctly flagged (and no
mines are incorrectly flagged).

You can read more about the game on the Wikipedia page, and you can play
an online version of the game on this webpage. (Note that their criteria for
winning is different from ours, and requires uncovering all of the non-mine
fields.) You should also take a look at the sample outputs for examples of
how the game is played, won, and lost.

Your program will need to:

 Read in and store a minesweeper board from a file

 Populate the board with the “clues” about the number of “mines”
neighboring each tile

 Allow the user to either “reveal” or “flag” a specific field

 Print out a version of the board that only shows the user the fields they
have already revealed and/or flagged

 Fill out “islands” of empty space when an empty field is revealed

 Check for win and lose conditions on each turn, and end the program if
the game has been won or lost

https://en.wikipedia.org/wiki/Minesweeper_(video_game)
http://minesweeperonline.com/#beginner

CMSC 201 – Computer Science I for Majors Page 4

Specification

Prior to this assignment, you should be familiar with the entirety of the
Coding Standards, available on Blackboard under “Assignments” and linked
on the course website at the top of the “Assignments” page.

You should be commenting your code, and using constants in your
code (not magic numbers or strings).

Any numbers other than 0 or 1 are magic numbers!

You will lose major points if you do not follow the 201 coding standards.

If you have questions about commenting, whitespace, or any other coding
standards, please come to office hours.

Additional Specifications

For this assignment, you must use recursion to fill out the “island” of
empty space when an empty field is revealed. No other functions are
required to be recursive. You also must create and call at least eight
individual functions. All other design decisions are up to you.

For this assignment, you do need to worry about “input validation.” You may
assume that the user will enter the correct type of input (for example, an
integer if one is asked for, a float if one is asked for), but the input may be
negative, outside of the allowable range, or “bogus” (in the case of strings).

If the user enters a different type of data than what you asked for, your
program may crash. This is acceptable.

It is also acceptable if your program crashes when a filename is entered that
either does not exist, or has the wrong formatting for the minesweeper board.

CMSC 201 – Computer Science I for Majors Page 5

Details
The program starts by asking the user for the filename that contains the
minesweeper board, and reads in the file. It then runs until the game is won
or lost. At each turn, it should prompt the user for a row and column, and
then for an action: “r” for reveal or “f” for flag.

Reading in and Creating the Board
When the board is read in from the file, it will only have three characters:

 An octothorpe “#” the borders of the board

 An asterisk “*” a field where a “mine” is located

 A space “ ” any field other than a border or “mine”

Your program will have to go through the board it has read in, and determine
the “clue” for each field by counting the number of mines it touches. (This
only needs to be done for fields that aren’t border or “mine” fields.) That
number clue will need to be stored or remembered somehow, but the
specifics of that are left up to you.

When shown to the player, the board has different characters that represent
different types of fields.

ex. Character Meaning Explanation

Octothorpe Border Border of the game board

. Period
“Empty” field
(unknown contents)

Field the user has not chosen
to reveal or flag yet

 Space
“Island,” a field with no
mines touching it

Field that has been revealed,
but does not touch any mines

8
Numbers
(1, 2, 3, etc.)

“Clue” about the number
of mines near that field

Field that has been revealed,
and touches at least one mine

F Capital F
Field that has been
flagged

Field that may possibly
contain a mine

X Capital X Detonated “mine”
Field that contains a mine,
and was revealed

CMSC 201 – Computer Science I for Majors Page 6

Displaying the Board
The board should be displayed to the user starting with only empty fields and
borders, and details should only be shown as the user flags and reveals
fields. For example, the board file on the left would display as the board on
the right when the game starts:

board2.txt board as displayed to user

#######

* #

* #

** #

*#

#######

 1 2 3 4 5

 # # # # # # #

 1 # #

 2 # #

 3 # #

 4 # #

 5 # #

 # # # # # # #

HINT: Think very carefully about how to handle these two different boards!
This is a crucial part of your design, so spend some serious time on it!
(Hint, hint: using two different boards is one possibility, and likely the easiest
and simplest one to implement.)

At each turn, the updated board should be printed to the user, and the
number of “mines” left should be printed out.
(It is possible for the number of “mines” left to be negative, if the user has
flagged more fields than there are “mines.”)

We have provided a prettyPrintBoard() function for you, that will

print the board with the row and column numbers, and with the board spaced
out to look more like a square (as seen on the right above).

The code is available as a separate file under “Assignments” on Blackboard,
and is called “pretty.txt”.

You can also get it from Dr. Gibson’s pub folder using the command
 cp /afs/umbc.edu/users/k/k/k38/pub/cs201/pretty.txt .

CMSC 201 – Computer Science I for Majors Page 7

Playing the Game
If the user chooses to reveal the field, one of the following things may occur:

 If the field is a “mine,” it will “explode,” and the game is over

 If the field is a number clue, the number will be revealed

 If the field is an “island”, the game will recursively figure out the “edges”
of the “island”

 If the field is a flag, the field will not be revealed
o Print a message that that coordinate must be un-flagged first

 If the field was already revealed to be a number clue or an “island,”
nothing will happen

If the user chooses to flag the field, one of the following things may occur:

 If the field is empty (e.g., unknown), a flag will be placed there

 If the field is already flagged, the flag will be removed
o Print a message stating that the flag was removed from that field

 If the field was already revealed to be a number clue or an “island,” the
field will not be flagged, and the game will

o Print a message stating that that coordinate cannot be flagged

The game is won when all of the “mines” have been correctly flagged, and (at
the same time) none of the non-mine fields have been incorrectly flagged.

CMSC 201 – Computer Science I for Majors Page 8

Number Clues
Fields that are not “mines” or borders will need to contain clues about how
many “mines” are in the eight fields near them. Some examples are shown
below, with the number clue in the center, and “mines” represented as a “*”.

(The top left has no “mines” nearby, so there is no number clue in the center.)

Note as well that the presence of border fields does not change the value of
the number clue, as long as the same number of “mines” are still present.

The examples above only show the clue number for the center field. If these
were complete boards, the clue list would look as follows (assuming there are
no additional mines beyond the shown fields).

CMSC 201 – Computer Science I for Majors Page 9

Revealing Islands
If the user chooses to reveal a field that is not a “mine” and has no “mines”
near it (and has not already been flagged), then they have chosen to reveal
an “island.” When an “island” field is revealed, all of the neighboring islands
and number clue fields also need to be revealed. For example, the game
board state below was created only by revealing the field at row 4, column 1:

 1 2 3 4 5 6 7 8 9

 # # # # # # # # # # #

 1 # . . 1 1 #

 2 # 1 1 1 1 1 . . . #

 3 # 1 . . . #

 4 # 1 . . . #

 5 # 1 . . . #

 6 # 1 1 1 . . . #

 7 # 1 #

 8 # 1 1 1 2 #

 9 # #

 # # # # # # # # # # #

The function to reveal all of the neighboring “island” and number clue fields
must be implemented using recursion. As always, think about what the
base case(s) should be, and what the recursive case(s) should be.

Additional Information and Examples
For more information, look at the sample output files available. They contain
an example of the required input validation, how flags work, a game that is
lost, a game that is won, and different board sizes.

You can download all of the boards used in the sample output (plus an
additional, larger one) by using the following command:
 cp /afs/umbc.edu/users/k/k/k38/pub/cs201/board* .

You are also highly encouraged to make your own test boards – you can
create and share these with your classmates if you want as well.

CMSC 201 – Computer Science I for Majors Page 10

Points
The project is worth a total of 80 points. Of those points, 10 will be based on
your design document (creation of it and following it), 10 will be based on
following the coding standards, and the other 60 will be based on the
functionality and completeness of your project.

Design Document
The design document will ensure that you begin seriously thinking about your
project way early on. This will not only give you important experience doing
design work, but will help you gauge the number of hours you'll need to set
aside to be able to complete the project. Your design document must be
called design3.txt.

For Project 3, you are creating the design entirely on your own.
You may NOT work with another student to “brainstorm” a solution or
discuss any general approaches or requirements. If you need assistance
with the design document, come to office hours.

Your design document must have four separate parts:

1. A file header, similar to those for your assignments
2. Constants

a. A list of all the constants your program will need, including a short
comment describing what each “group” of constants is for

3. Function headers
a. A complete function header comment for each function your plan

to create, including the description, inputs, and outputs
4. Pseudocode for main()

a. A brief but descriptive breakdown of the steps your main()
function will take to completely solve the problem; note function
calls under the relevant comment (if applicable)

Your design can follow the same general format as the design for Project 1.

CMSC 201 – Computer Science I for Majors Page 11

Your design3.txt file will be compared to the proj3.py file that you

submit. Minor changes to the design are allowed. A minor change might be
the addition of another function, or a small change to main().

Major changes between the design and your project will lose you points. This
would indicate that you didn't give sufficient thought to your design.
(If your submitted design doesn’t work, it is generally better to lose the points
on the design, and to have a functional program, rather than turning in a
broken program that follows the design. The ultimate decision is up to you.)

To submit your design document, use

linux1[4]% submit cs201 PROJ3_DESIGN design3.txt

Submitting design3.txt...OK

linux1[5]% █

Sample Output
As always, the sample output is available as a separate file under
“Assignments” on Blackboard, and is called “sample3.txt”.
There is a (very long) solved game for board3.txt provided in
“sample3_long.txt” as well.
(Yours does not have to match the sample output exactly, but it should be
similar. Don’t forget that the prettyPrintBoard() function is available for

you to use!)

CMSC 201 – Computer Science I for Majors Page 12

Submitting

Once your proj3.py or design3.txt file is complete, it is time to turn it

in with the submit command. (You may also turn the design or project in

multiple times, as you reach new milestones or complete each piece. To do
so, run submit as normal.)

To submit your design file (which is due Friday, May 4th, 2018 by 8:59:59
PM), use the command:

linux1[4]% submit cs201 PROJ3_DESIGN design3.txt

Submitting design3.txt...OK

linux1[5]% █

To submit your project file (which is due Friday, May 11th, 2018 by 8:59:59
PM), use the command:

linux1[4]% submit cs201 PROJ3 proj3.py

Submitting proj3.py...OK

linux1[5]% █

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can check that your project and/or design was submitted by following the
directions in Homework 0. Double-check that you submitted your files
correctly, since an empty file will result in a grade of zero for this
assignment.

